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Unified Method for Determining the Complex
Propagation Constant of Reflecting and

Nonreflecting Transmission Lines
J. A. Reynoso-Hernández, Member, IEEE

Abstract—In this letter, a unified method for computing the com-
plex propagation constant of reflecting and nonreflecting lines
is presented. The method uses a new matrix representation of the
wave cascade matrix of a line having any characteristic impedance.
To overcome the sign ambiguity problem inherent to the classical
method some parameters of the fictitious XAM matrix are used
and determined by the method itself. The success of the new pro-
cedure to resolve the sign ambiguity problem lies in the new ma-
trix representation of the wave cascade matrix of a line having any
characteristic impedance and in the reliable criterion to determine
the and parameters of the fictitiousXAM matrix.

Index Terms—ABCD matrix, eigenvalues, wave cascade matrix,
wave propagation constant.

I. INTRODUCTION

USUALLY, the complex propagation constant is deter-
mined from scattering parameters measurements ( )

performed on two lines (Line–Line Method) having the same
characteristic impedance but different lengths [1]. Once
the parameters are measured either the ABCD [2] or
wave cascading matrix (WCM) [3]–[5] may be used for of

determination. Therefore the first step in the broadband
calculation is the determination of the eigenvalues and
[3], [5]. Different expressions for computing and , using
the L-L method along with ABCD and WCM, are shown in
Table I. On the other hand, experimental results have shown
that neither nor represents in broadband a continuous
wave in phase and magnitude. Indeed, in nonreflecting lines
and exhibit discontinuities in phase and magnitude located
at the vicinity of 90 and 270 and the reflective lines and
may exhibit additional discontinuities in phase and magnitude
in the vicinity of 180 and 360 . Briefly stated, to date the
main problem with the broadband determination when using
the ABCD or WCM is the lack of a reliable criterion to discern
between the two eigenvalues and , a continuous wave
in phase and magnitude representing either an incident or
reflected wave. In the case of nonreflecting lines a reliable
method for determining a continuous was already developed
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TABLE I
COMPARISON OF DIFFERENT METHODS FOR EIGENVALUES COMPUTATION

USING ABCD AND WCM FORMALISM

[6]. In this work, a unified method for determining and of
reflecting and nonreflecting lines is presented. The method is
based on a new matrix representation of the WCM of a line
having any characteristic impedance .

II. METHOD DESCRIPTION

The implementation of the method requires two lines having
the same characteristic impedance but different length as shown
in Fig. 1. The two ports referred to as X and Y correspond to
transitions used for ensuring the connection between the lines
and the vector network analyzer at the line input and output
ports. X and Y include the microwave probes, coaxial to mi-
crostrip microwave connectors (launchers) and the necessary
hardware for the network analyzer. We use the matrices, ,

, and , for modeling respectively, the transitions
X, Y and the line and . Next, we assume that X and Y
are unequal. The measured scattering parameters S, expressed
in WCM matrix form by and of the complete struc-
tures, can be expressed in the form

(1)

(2)

Combining (1) and (2), the matrix product is given by

(3)

From the matrix theory it should be noticed that and
are similar matrices. In fact, properties of similar ma-

trices have been used in the classical method to determine the
eigenvalues and of the matrix product .
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Fig. 1. Structures used for the implementation of the Line–Line method.

The WCM matrix of a line of length ( , 2)
featuring the unknown characteristic impedance can be ex-
pressed in the form

(4)

where and is the reference
impedance.

The novelty of the method for computing of lines of un-
known impedance is based on the fact that expression (4) may
be expressed as

(5)

where

(6)

(7)

An expression similar to (5) for impedance transforming be-
tween ports was published in [7]. The main difference between
[7, Eqs. 5 and 91] lies on the fact that (5) does not represent a
change of reference impedance of the line. The new WCM rep-
resentation of a line having any characteristic impedance, mod-
eled with (5), suggests that any transmission line having any
characteristic impedance can be modeled as a nonreflecting line
embedded in two symmetrical and reciprocal transitions in our
case modeled by the matrix.

Using (5), (3) becomes

(8)

where

(9)

(10)

Defining the matrix product by

(11)

and the matrix product as

(12)

where

(13)

the expression (8) becomes

(14)

Finally, may be written as

(15)

Using (10), (11), and (13), (15) becomes (16) as shown at the
bottom of the page.

Comparing each term of the matrices on both sides of (16),
may be expressed in the form by

(17)

(18)

(19)

It is interesting to comment on the main features of the clas-
sical and the new methods for determination. In both methods
sign ambiguity problems exist. In the classical method as al-
ready mentioned the problem is to determine a continuous
from the previous knowledge of the two discontinuous eigen-
values and . Unfortunately, in spite of previous efforts [5],
[8], [9] there does not exist a reliable criterion to determine a
continuous using the procedures indicated in Table I. As for
the new method, the sign ambiguity is indirect and is present in
the solution of the quadratic equations (18)–(19). Fortunately,
a reliable criterion to resolve the sign ambiguity in the solu-
tion of (18)–(19) was already established [10]. In summary, it
seems that the success for determining a continuous lies in
the new matrix representation of the wave cascade matrix of a
line having any characteristic impedance and in the reliable cri-
terion to compute and .

(16)
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(a)

(b)

Fig. 2. Polar plot of the traveling wave � illustrating a continuous behavior
in phase and in the frequency range of 0.040–10 GHz: (a) ZZZ = 60 
 and
(b) ZZZ = 75 
.

(a)

(b)

Fig. 3. (a) Attenuation per physical length versus frequency and (b) effective
dielectric constant versus frequency for a microstrip lines computed with the
new technique.

III. EXPERIMENTAL RESULTS

In order to demonstrate the usefulness of the proposed tech-
nique, microstrip lines fabricated on TFR4 have been investi-
gated. Scattering parameters of these lines have been measured
using a HP8510C system in the frequency range 45 MHz–10
GHz without any previous calibrations. Then the measured S
parameters of the microstrip lines are converted to WCM to de-
termine . Fig. 2 shows a polar plot of determined using (17).
It should be noted that continuous phase and magnitude vari-
ations throughout the frequency band are observed in Fig. 2.
The continuous phase and magnitude variations of allow the
broadband determinations of the phase shift of lines and the line

losses. Once is calculated the wave propagation constant is
computed using the expression given by

(20)

The wave propagation constant is directly related to the at-
tenuation coefficient and phase constant and respectively
( ; ; where : is the frequency
and is the light velocity). Finally, the attenuation coefficient
per centimeter length and the effective dielectric constant
have been determined and their variations versus frequency are
shown in Fig. 3.

IV. CONCLUSIONS

A unified method for determining and of reflecting
and nonreflecting transmission lines has been presented. The
unified method is based on the new WCM expression for
modeling transmission lines for an arbitrary characteristic
impedance. Furthermore, the new WCM expression indicates
that any homogeneous transmission line may be modeled as a
nonreflecting line embedded in two symmetrical and reciprocal
transitions. The usefulness of the unified method for deter-
mining and of reflecting and nonreflecting transmission
lines has been demonstrated by evaluating the attenuation con-
stant and the effective dielectric constant of reflecting
microstrip lines fabricated on TFR4 substrates.
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